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Abstract
In this paper we descridbe some results ob- between these structural extremes. It is our
tained ove: the past few years in the areas of feeling that results of this type not only pro- o
estimation and control. The point of this research vide useful solutions to certian problems but ]
| < is to find subclasses ~f systems that possess suf- also shed considerable light on the implications ]
ficient structure to allow us to determine optimal of structure. That is, we can begin to answer
| WSS golutions or computationally feasible algorithms, questions such as which results really require
:‘ In particular, we utilize several results from linearity and which can we extend to systems with
group theory (both for Lie and finite groups) to somewhat less algebraic structure. :

cbtain our results.
IX. Finite-Dimensional mal Nonlinear Filters ’

The results we review in this section were
obtained in collaboration with James Lo and .
Steven Marcus. For thorough treatments of these 2
and related results and for further references,
we refer the reader to [1-8). Consider a dynami-
cal system described by the following equations:

I. Introduction

utilough in principle many control and estima-
tion problems have been solved in extremely general
settings, the solutions are often unacceptable

because
(a) The "solution"” does not actually provide e +
a design (as in the so-called Kushner- s [AO _lhiai(t) i .
Stratonovich solution of the nonlinear
filtering problem). x(0) = x (given)
(b) The resulting design is much too complex
to be evaluated for a specific system aE(t) = PE(t)At + Gaw(t) (2.2)

(as in solving cxtremely high-order)
Riccati equations).

or (c) The design is computationally too complex
for on-line implementation (as with many
nonlinear filtering algorithms or the

where £ € R*, x ¢ R* or R, snaw is a standard
Brownian motion process. Such a system is often
called a bilinear system, and systems of this type
arise in a wide variety of applications (see

e i e

control of large interconnocted systers). {1-3,5-7]). One very important application arises
Often these difficulties arise because of the ex- when x(t) is a 3x3 direction cosine matrix, repre-
treme generaltiy of the problem being solved. The senting the orientation of a rigid body with
approach of the research described in this paper respect to inertial space (see [6,7] for details).
has been to restrict attention to subclasses of Here the A; are all skew-symmetric and the §; 4
systems and problems in order to exploit the alge- represent components of the angular velocity of 3
braic structure that they have in common. Our the rigia body (in this case, of course, an equa- -
/ motivation has been that there must be a middle tion of the form (2.2) holds only for spherically-
; ground between "linear" and "nonlinear” or between symmetric bodies; otherwise the equations contain
£ *"small-scale” and "large scale" -- i.e. that while nonlinearities, reflecting differences in the .
i in both cases the former categories may be too body's moments of inertia). .
i restrictive for many applications, the latter are The estimation problem we wish to consider is
far too large Lo provide many useful results. In as follows: we observe
this paper we describe several results--all using 1/2
group-theoretic concepts-~for classes of systems az(t) = HE(e)ac+ R av(t) (2.3)

where R > 0 and v is a standard Brownian motion
process independent of w. Given z(s), 0 <s < ¢,
we want to devise a recursive procedure for esti-
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%(t]t) = glx(t) |z(s), O<sst) (2.4)

Problems of this type arise in rigid body attitude
estimation problems, when we have a strapdown
system that provides measurements of angular ve-
locity (see [6]) or when we have an inertial plat-
form (see (6,7]).

In order to understand this problem let us

consider the simplest case -- N=n=k=l, In this
case
ne A, f E(s)as
x(t) = [ ]xo (2.5)
The solution then is clear: let
(2.6)

t
p(t) = [ E(s)as
(]

and design a Kalman filter to compute the optimal

estimate (E(t|t), P(t]t)) of the augmented state
(E(t),p(t)). Then .

i Ap(e),
x(t|t) = e le z(s), O<s<tlx, (2,7)

and, since p is Gaussian when conditioned on 2z,

we can compute x(t|t) as a function of §(t|t) ana
its covariance

A 1.2
Agt + AP (tle) + 3 Ala(th:)

x(tft) = e (2.8)

olt]t) = EL(p(E)-Dit]en?) (2.9)
where O can be precomputed.

The key question is how this simple result
extends in the multivariable case. Note that if
all of the A, commute, we can write

i
. t
x(t) = exp{not + Ehi f E’_(s)ds}xo (2.10)
i=]1

and in this case one can readily extend the scalar

result (see [1]). When the Ai don't commute the

situation is far more complex, and, in fact, in
order to obtain results, one must determine the
manner in which the Ai don't comtute., This leads

to the introduction of some notions from the
theory of Lie groups and Lie algebras.

tet L be a subspace of kxk matri-
L is a Lie algebra if

pefinitions (1)
ces (over C).

a,B) 4 AB-BA el va,exl (2.11)

(2) 1let S be a set of kxk matrices. Then
there exists a smallest Lie algebra {s)A that

contains S, This is called the algebra generated

(3) Let L be a Lie algebra. The Lie
G associated with L is the smallest group (under
matrix multiplication) containing exp(r) Viel.
(4) et L be a Lie nq.bn. A subalgebra
Slllnmalif L ontii o 4

tL,S) 4 {51 |1el, seS} c S (2.12)

usu.ucu!.,uuc(s}“_mumum
4

in L generated by S.
(5) A Lie algebra L is nilpotent if the
lower central series of ideals

" ]
e (2.13)

terminates in {0} for some n. Note that L is

abelian if and only if L} = {0},

We refer the reader to [1,5,6] and in parti-
cular to [9,10] for physical and mathematical
sotivation for the introduction of Lie-theoretic
concepts into the problem of analysis of bilinear
systems. We only note the following: we asso-
ciate two Lie algebras with the system (2.1)

L= (AO'AI""'N}A
Lo = yemeedd,

Then if Go is the Lie group associated with Lo,

x(t) € c G x, (2,15)
For more detailed controllability results, we
refer the reader to [9,10].

Ve have already stated that if L is abelian,
we can obtain a finite-dimensional optimal esti-
mator for x(t), and in fact that estimator con-
sists of a Kalman filter followed by an exponen-
tiation. More generally, we obtain the result
[6,81.

Theorem 2.1: Suppose Lo is nilpotent. Then

x(t|t) can be computed via a finite set of (in
geperal nonlinear) stochastic differential equa-
tions (driven by the innovations

avit) = az(e) - uE(e|e).
The basis for this result is as follows: if
Lo is nilpotent, then one can readily show (6,8)

that every element of x(t) is a finite sum of
terms of the form

ft c'E(s)as

o) me nte) (2.16)

where n(t) is a finite Volterra series

(2.14)
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where the kernels are separable - i.e. the w's
are of the form

m
i
¥£,0) e s0 = &Yo(t)ii(ol)..ﬂ;(o‘j) (2.18)

Theorem 2,1 then follows from the more general.

Theorem 2.2 ([6,8)): The estimate s(tlt) can be

computed with a finite~dimensional set of sto-
chastic differential equations if n is given by
(2.17) with all separable kernels. This result
includes far more system than those described by
(2.1). We refer the reader to (6,8,11] for exam-
ples and more on systems with such Volterra series
representations,

The proof of this result is quite lengthy
and complicated, and we refer the reader to (6,8]
for details. We indicate only a few of the cri-
tical ideas. The separability condition is es-
sential to have finite-dimensional realizability.
Consider one of the simplest cases

t

o) = J wit,9Emas (2.19)
0

Using a conuitional version of Fubini's theorem,
we have

t
$cjo) = [ wie,oBs|tras (2.20)
. _

At first glance, it appears that we have to
smooth the entire £ trajectory in order to estimate
¢. However, if w is separable, then we can
realize (2.19) by a finite-dimensional linear sys-
tems which when combined with (2.2) leads to a
finite-dimensional Kalman filter that can compute
(2.20). The situation for higher order Volterra
terms is more complicated but similar.

Now define the conditional smoothed covariance

Fa3
24(0,00,,t) = EUE, (0))-8, (0, |0} (€, (0,08, (0, | D)
(2.21)

A critical property of P is that it is separable.
To see the importance of this consider

t o, © \
o= f f J €,(0,)8,(0,)€;(0;)80,80,40,

0 0 O (2.22)

e b ol L ia g T—
ﬁ du.ccxpru slon. vzl.tc 7
g0y = o)L gl + Eiole  (2n

Ona of the terns that results from this s i

) -ff f u:,_(a )-El(a Jen

(€, (o, )-e (0,|e)1€, to, | 180,80 80,

Then it is easily shown that

t 01 o

- ~

vit|t)= f f f' P «11.02.:);3(c:ralt)au,ac:rzaa1
00 s

to 5
-[fl P (0 ,az.t)pa(ﬂzlﬂ 1 (2.24)

where
g 4
93(0) - fEJ(l)dl [

0

Main, it is easily seen that the separability

of 912 allows us to augment £ with a finite set

of variables in nrder to determine a Kalman filter
that computes ﬁ(tlt) . 7
One of the other terms in (2.22), (2.23) is

t o O -
1 p2
ute)= f f f §, (0, |618, to, |18, (0, | a0 a0, a0
0 "0 O

Taking the differential we cbtain i

9%
au(e) = F.l(tlt)x(t)dt +fj; f

atf, 0, [618, (o, | 1€, (0, |2 180, 80,00,

(2,26)

t O
1 >~
Alt) -ff Eztolh);,(ozlt)aozdol (2.27)
(e} 3

Using Ito's differential rule on the second term ]
in (2.26), computing dA(t) in much the same man-
ner, and iterating these arguments, we obtain a
finite-dimensional set of nonlinear differential
equations (driven by the innovations) for the com=
putation of y (see [6]). The general result !
follows from arguments along these lines and from
related properties of conditional Gauasian

processes. £ :




. -

Thus, we see that this result combines some
relatively simple properties of linear filters
with the algebraic structure of nilpotent bilinear
systems in order to provide one of the largest
classes of finite dimensional optimal nonlinear
estimators that in some sense can be viewed as a
"natural® extension of the Kalman filter ([1,6]).

3. Fast Estimation Alggrithms for Certain
Markov Chains

Let x(k) be a finite state Markov process with
state set S = {s.l""'slt) and with probability

vector p(k) (here p(k), = Prob{x(k)-si)). The
probability transition equation for the process is

p(k+l) = ap(k) (3.1)
vhere A is an NxN stochastic matrix. Suppose we
take a sequence {y(k)} of noisy measurements

of the process. These measurements are charac-
terized by the conditional distribution ( if y is
discrete) or density (if y is continuous)

ctu,i) = Ply(x)=u|x(x)=s,) (3.2)
we also assume that, conditioned on x{(k), y(k) is
independent of all other x(j).

The problem of computing the conditional dis-
tributions p(k|k) and p(k+1|k) for x(k) and
x(k+1) conditioned on y(1),...,y(k) is concep~
tually trivial, and the solution is given by

pDiffusion ate

p(k+1{k) = Ap(k|k) (3.3
Measurement t_lgate

pu;lk)i = C(y(k),1)p(k]x~1) s (3.4)

Zc(y(k)j)p(klk-l)
31 3

Although the derivation of (3.3), (3.4) is a tri-
vial application of Bayes' rule, the implementa-~
tion of these equations can be computationally
nontrivial. For example, in general we must per-
form N2 multiplications in carrying out the dif-
fusion update. The question we wish to consider
in this section is the investigation of special
classes of finite-state Markov process for which
the estimation procedure (3.3), (3.4) can be per-
formed efficiently. The results we discuss in
this section and other related topics are treated
in much more detail in (12-15],

To motivate the approach, suppose x(k) € 1“-
the group of integers {0,1,...,N- psovith
addition defined modulo N. Furthermore, suppose

x(k+1) = [x(k) + w(k)] mod N (3.5)

vhere w is a sequence of identically distributed,
independent, random variables with values in zu

and with distribution {. We also assume

-— - —

(3.6)

y() = [x(k) + vik))) mod ¥
vhere v is a sequence of independent 5 -variables,

independent of w. Let N(k) be the distribution
for -v{k) (here "minus® is interpreted modulo¥).

In this case, several straightforward al.euudou
y:l..ld the filtering algo:iﬂ\- -

plxslfx), = ?: ejpmlx) 49 (3.7
nox) p(klk 1)
1~y (k)
ek, = (3.8)

E (k) gy Pkl |

where all indices are tobolnumot.d-od!
Let us identify 7, with {1,2,22,...,2%1}

where z is an indeterminate and we multiply with

the rule :- - :I.-zo(hcneo this is a group isomor-
phic to zu). Then any function f: z'-vc is

represented in the form

Ne
Fn zf ‘i.’i
: i=0

We equip the set of all such functions with the
usual definitions of pointwise addition and scalar
multiplication and with a convolution product

(3.9)

¥-1 1 ¥- 144
fog = £ =z 2 g:l - 2 tig’:
;=0 1,3=0
2 §
27,2
t=0 (3.10)

(3.11)

N=1
“= E £29e-2

This set, denote w’c[ﬁ‘l’ is called the (complex)
group algebra of Z, . ¢ with this notation
3. 7) becomes

pix+l|kx) = E'p x|x)

If we also equip clz“l with the pointwise
product

3.12)

‘!')‘ - f1§1 (3.13)
and the evaluation map
w1
s(f) = B £,

then (3.8) becomes

(3.14)
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* A(k) = ney(x) (3.15)
yik|k) = A(k)pik|k-1) ‘ (3.16)

plxlx) = -’.’-‘r’;‘%ﬁ;n i (3.17)

(here we regard y(k) as an element of c[zul).

Examining these equations we see that the diffusion
update (3.12) consists of a cyclic convolution,
witile the measurement update consists of a permu-
tation (3.15), a pointwise multiplication (3.16),
and a normalization (3.17). Note that if we wrote
(3.12) in the vector form (3.3), A would be a cir-
culant matrix.

The presence of a cyclic convolution in these
equationssuggests the possible use of transforms.
For £ € clz'l. define ;

b} =3im
c,(f) == Z £y (3.18)
i N o ®

Y"’jh/n_'.‘...... gilgrs '(3.19)

Note the inverse transform relation
N-
£ - f c, (Y™ (3.20)
r i=0 =

Applying transforms to the algorithm (3.12),
(3.15)~(3.17) yields

ci(p(kulk)) =N, (E)c, (o (x]x)) (3.21)
c, Atk = yY®e () (3.22)
N-1
cgtyixlkn = 35 c e, (3.23)
§=0
ci(Y(klk))

ci(p(glk)) = Reg CYRTRD) (3.24)

Examining these cqugtlons we note two things:

(1) Comparing (3.12), (3.16) with (3.21),
(3.23) we see a striking "duality".
In the C(Zz_ ] domain the diffusion up-
date is a = convolution and the central
step of the measurement update is a
pointwise product. On the other
hand, in the transform domain the
situation is exactly reversed,

(2) We can exploit this duality to re-
duce the overall comutinna!.
complexity from o(N%) to O(N log N)
with the aid of the fast Fourier
transform (FFT).

Motivated by these observations, we consider
a more general problem (for a far more general
case, see [14-15]). To do this we need the fol-
lowing (1161)

Definitionss (1) Let X be a group, The (E__h_a_z_)
group algebra C[X] consists of all formal sums

£= ) f.g £ec (3.25)
gex 9 g

with pointwise addition and scalar multiplication,
and the convolution product

fea= 3 £a.gh= Lyt (3.26)
grex 9h t£X _
ek g -

We also endow C[X] with the pointwise product and
the evaluation map

(£q), = stt) =S ¢£ (3.28)
h !hgh " g g

(2) a :egreunﬁtion T of X is a homomorphism
of T: X"C’“k

(3) Such a representation is calle
irreducible if the only subspacesV of C™ such that

T™ix} VCV VY xEX (3..29)
are {0} ana &,
(4) Two representations T, and T, am”egg' .1-

‘valent if there exists an invertible matrix S such

that
-1
T, (x) = 8T, (x)S VEX (3.30)
Let X be a given finite group with n elements.
Then ([16] one can find a complete set of inequiva-

lent,.irreducible representations Ti,...,T% with

aimt =« s*, 7t = 1, ana

s 2 P
n= 2 3,31)
&n

Furthermore, one has the transform pair

z
) =L ¥ oottt ©.32)
ex ¢
. ,
0 - ’g ’); jk(mjk(g) (3.33)




Consider a random process x(k) and a sequence of
observations y(k) on X described by

x(k+l) = w(k)x(k)
y(k) = v(k)x(k)

(3.34)
(3.35)

vhere w and v are independent sequences of inde-
pendent random variables on X. Let & be the dis-
tribution of w, and let n be the distribution of

v.l. In the group algebra domain we obtain the

following filtering algorithm

p (k+1|x) = Esp (x|k) (3.36)
Alx) = ney(k) (3.37)
yik|x) = Ax)p (x|k-1) (3.38)
oxli) = YOI (3.39)

sly(k]x))

If we consider the transform domain version of the
algorithm we find

o (x+1]k)) = c‘(E)é‘(p(klk)) (3.40)

Ao = Amirtiyo e (3.41)
i

c‘b(klk)) - SO0 M) (3.42)

nct (y(x]x))

and we can make the following remarks:

(1) The convolution (3.36) of the diffusion
updi.te is transformed into a pointwise
multiplication (3.40) of the transform
matrices,

(2) The transform version of the pointwise
multiplication (3.38) is in general
quite complex (see [15])., However, in
certain cases -- e.g. vhen X is a
metacyclic group [16] -- it can be
interpreted as a convolution of the
transforms, yielding the "duality" en-

countered earlier in the z“ case,

(3) In order to take advantage of pointwise
multiplication versus a convolution, we
need to be able to perform the trans-
forms (3,32), (3.33) quickly. A general
procedure for this is not yet known,
but in certain cases (such as the meta-
cyclic case) we can obtain generaliza-
tions of the FFT.

We note thatvia Myhill-type constructions, general
finite state Markov processes can be viewed as
evolving on semigroups (12-14], and thus the

issue of the complexity of semigroup algebra mul-
tiplication is important in understanding the com=-
plexity of the filtering problem, Work in this
area is continuing [17]).

* lowed by a calculation of u(k).

4,
Interconnections

The results described in this section are 3
preliminary in nature and a more detailed treat- /
ment will be given in the forthcoming report (18],
We also refer the reader to results in [19], (20] ;
that are along these lines. The basic idea of 1
this work is to consider control and estimation ¥
for systems that are made up of many interconnec~
ted subsystems. The major problems that one is
interested in are either

ey

(1) Algorithmic ~- i.e. the systems are so
complex that the usual design and analysis 3
algorithms (computer solutions of Lyapu- :
nov or Riccati equations, etc.) cannot
handle them. One wants to devise special
algorithms for analysis and synthesis that
utilize the system structure. E

or (2) Implementation -- i.e. often the usual {
system designs cannot be implemented in
real time, and one wants to utilize sys-
tem structure to speed up implementation
(for example by taking advantage of
sparseness) or to determine faster, per-
haps decentralized, designs.

As in the preceding sections, our approach
consists of examining systems that possess certain
structural properties that we can exploit,
Consider the dynamical system

x(k+l) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + wv(k)

(4.1)
(4.2)

and suppose we waat to design a feedback controller
that produces u(k) based on y(j), j<k and that
minimizes

«©
J= n'{z [x* (k)Qx (k) + u' (k)m(x)l} (4.3)

k=0

The solution to this problem is well-known and it
consists of a Kalman filter to estimate x(k) fol-
The design invol-
ves the solution of 2 Riccati equations of dimen-~
sion n=dim(x), If n is large, this is an extremely
difficult problem, In addition, the on-line im-
plementation also requires a large number of com-
putitions per stage.

Suppose, however, that the overall system
can be decoupled into smaller subsystems by change
of basis on the state, input, and output spaces.
Then, we can solve lower-dimensional problems and
things become simpler. The difficulties are the
following

(1) 1In general it is not easy to find such
basis transformations.

(2) In general one can't expect to decouple
everything (including the cost J).

(3) Por on-line implementation one would
have to perform the input and output
transformations in real time. In ge-
neral this is a difficult computational
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task.

Consider, however, the following situation:
our system is made up of N identical subsystens
numbered from O through N-1, and they are intercon=
nected in a circularly-symmetric fashion. That is,
%, uy.¥, and v are composed of subvectors for
each subsystem, and if we use a subscript to denote
the subsystem number, we have

x, (k+1) = Ax, (k) + Bu, (k) +v_ (k)
i - - i
o b 1S (4.4)
N-1
y (k) = Eo Cyxy_y (k) + v, (k) (4.5)

(note that in this case A in (4.1) is block circu-
lant) . Suppose also that

Elw, (w3 (2] = 12-36"‘ (4.6)
Elv, G0v3 ()] = 91.561:9. : (4.7)
and
i N=-1
JeE fx! (K)Q, ., (K)+u! (IR, .u, (k)]
""°."§:'°1 RS il i T

Let us then take the subsystem transforms

=2 -i
x(k,L) = E: xi(k)y
i=0

4.9)
N-1 1’.

A(L) = B ALY
etc

One then finds the following transformed problem
{here * = complex conjugate):

x(k+1,2) = A(L)x(k,2) + B(R)u(k,L) + w(k,2) (4.10)

y(k,0) = c(L)x(h,2) + vik,L) (4.11)
vhexe

E(w(k,L)w*(§,m)*) =] e, 8, (4.12)
E(v(k, 2)ve (3,m)*) = @0, &, (4.13)

1 0 N
e ) E:"'Oh’c)'Q(l)x(k.l)m'(k.l)'n(nu(k,z
iy : (4.14

Thus, we have reduced the problem to N decoupled
problems. These are complex-valued problems, but
since x is real

A(-2) = A*(L), etc. (4.15)

oo ; e ki o Bl g x'm“

and we need only solve the problems for

M'l....' u_z-l-l .

Por this problem we have reduced the algo-
rithmic complexity (by obtaining lower order pro~
blems to be solved) and the complexity of imple-
mentation. That is, we implement the system as
follows: (1) obtain measurements yi(k): (2) vUse

FFT to compute y(k,2); (3) process this data
through '—;-L decoupled Kalman filters and op~

timal gains to obtain u(k,f); and (4) use the
inverse FFT to obtain ul(k).

The above analysis barely scratches the sur-
face of what can be done with s ch systems.
Other issues that we have considered and are stu-
dying presently are:

(1) Past algorithms for stability tests,
Lyapunov and Riccati equations, pole
placement, etc.

(2) Extensions to other types of group
symmetries (with the use of the cor-
zesponding transforms as described in
the preceding section)., Also the pos-
sible (simpler) use of numbex-theoretic
transforms.

(3) Decentralized control (viewed as a type
of “subsystem low-pass filter®).

(4) vutility of such control laws when the
system isn't quite of this form.

Results in these and related areas will be repor-
ted in (18],
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